CS 58500 — Theoretical Computer
Science Toolkit
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Today’s Lecture

- Mathematical Inequalities

Taylor approximation

Jensen inequality

« Integration

- Stirling Approximation
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Mathematical Inequalities: Taylor approximation

Taylor series

For any real or complex-valued function f(x), if it is infinitely differentiable at x = a, then it has the

following Taylor series expansion:

' " 2. £
fo =@+ 2+ L2 a4 = Y L gy
n=0

Can we truncate at the k-th term

eX =1+ x+ x? 4+ x> 4 .. and control the error?
2 3!

3
sin(x) = x —x? + -
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Mathematical Inequalities: Taylor approximation

Lagrange Form of the Taylor Remainder Theorem

For any real or complex-valued function f(x), under certain continuous condition around a, we have:

(n) (k+1)
f(x)—zf (@) (x—a)™ + f(k ff!)(x—a)"“ ¢ €[x,a]

1

Reminder R, (x)

J

exp(+e) =1+¢€ -|- .|_ ot (- 1)k _|_ O(ek+1
() sin(e) =0+ €+ 0+ R,(e) =€ — COS('E)
sin(e) = € + 0(e3) 30
2 - Since [cos(é)| < 1, we have
In(1—€) =—€— % + 0(e?) sin(e) = € + 0(e3)

Moreover, for small € > 0, R,(€) < 0. Thus
sin(e) < €
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Mathematical Inequalities: Taylor approximation

Lagrange Form of the Taylor Remainder Theorem

For any real or complex-valued function f(x), under certain continuous condition around a, we have:

k

@) Fee
f) = ) (e = @)+ g (= @) £ € [xal
n=0 \ ' J
Reminder R, (x)
exp(te) = 1+e+6—2+---+(—1)ki+0(6k+1) . :
plx T > ! Trick 1: based on the sign of R, (x), you can

sin(e) = € + 0(e3) get lower or upper bounds:

2 exp(—e) >1—¢

In(1—¢€) =—e——+0(e?)
2 In(1—¢€) < —¢

Trick 2: Desmos
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https://www.desmos.com/calculator/5rwlasrplm

Mathematical Basics: Convex function and Jensen’s inequality

Convex function

Let f be areal-valued function. Then, f is convex in [a, b] if one of the equivalent conditions holds:
Vx€lab], fPx)=0
VA€[01], x;,x, € [a,b], f(Ax; + (1 —ADxy) < Af(x) + (A — ) f(xy)

Jensen’s inequality

For a convex f, f (%) < f(x);f(y), “="ifandonlyifx =y x, X

More generally, f(E[X]) < E[f(X)] for any random variable
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Mathematical Basics: Convex function and Jensen’s
inequality

Jensen’s inequality
f(E[X]) < E[f(X)] V convex f

AM-GM inequality:

a+b
> Vab, VYa,b > 0
> f(x) =—=Inx
Young’s Inequality:
aP b1 1 1
ab < —+ —, Yab >0, pqg>1,—+—=1
p q p q

> f(x) =—1In(x)
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Mathematical Basics: Convex function and Jensen’s
inequality
Jensen’s inequality

f(E[X]) < E[f(X)] V convex f

Cauchy-Schwartz inequality:
1 1

layby + -+ a,b,| < (Z ai2> (Z bf)
i

i

2 2 2
= 2 i I 2 (& = bi Vi € [n
: pl bl — pl bl ’ pl ' Z b2

i 171

N
N

| S

> f(x) = x?

Holder's inequality:

1 1
» J L
ZIaibils ZIailp Zlbilq  Ypa>1o+o =1
i i i
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Mathematical Basics: Convex function and Jensen’s
inequality

Jensen’s inequality
f(E[X]) < E[f(X)] V convex f
Minkowski’s inequality:

(Zmi + bi|v>p

l

l

< <Z|ai|v>p + (Z:Ibilp)p vp =1

l

f(x) =P

Trick 3: Inequalities cheat sheet

https://www.lkozma.net/inequalities cheat sheet/ineq.pdf

January 20, 2026 8


https://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf

We first prove that
p

1 1
b b
> Uil + 157 < <Z|ai|p> +<Z|bilp) = (llall, +11bll,)"

Observe that

a a; b b;
@l + bl lall, |a;| N |bl[, | lI)

all, + ||b
(llall, +1 ”p)<||a||p+||b||p||a||p lall, + 161, BT,

B |ai| - |bi|
=: (llall, + Ibll,)) ()L lall, +(1-2) ”b”p>

Since x? is convex for p = 1, by Jensen’s inequality,

ip bip
(gl + 16iD? < (lall, + 151],)" (A al” )

lall? B

Summing over i:

P bo(P
S (ad + 17 < (lall, + 11l,)" (A Sl oy )
i { p :

p
p
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Summing over i:

la; [P |b;|P
Z(Iail +16:)? < (llall, + l1bll,))? (a +(1-2) Z ” b||;;>

P

~|lall}
lall? |7
= (llall, + IIbll,)" [ 1—2 + (1 — 1) —2Z
G ») lall? I1BII%

= (llall, + 11bll,,)"

By triangle inequality,
la; + b;| < |a;| + bl

Thus, we have

Ylag+bilP < ) el + 16D < (lall, + 1611,)"
[ [
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Today’s Lecture

- Mathematical Inequalities

Taylor approximation

Jensen inequality

« Integration

- Stirling Approximation
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Integration

Numerical integration

Given query access to f:[a, b] = R, how to estimate

| F0dx x {—» £(x)

1. Choose a set of points and coefficients {(x;, W;) }ie[nj

i w; f (x;)

January 20, 2026 12

Meta algorithm: Quadrature

2. Output



Integration

Midpoint rule / Riemann sum

jolf(x)dx - %z ; <i +n0.5)

=0

What is the approximation error?

Theorem (Midpoint rule error bound).

Suppose that |f"'(x)| < M, for x € [0,1]. Then, we have

jolf(x)dx —

January 20, 2026

1

i=0

2

13

i +0.5
n

)

<

24n?

12

T




Midpoint rule error bound proof

Consider the first interval [O, ﬂ By Taylor’s theorem,

1 1 1 1\°
FGO) = f (%> +f (ﬁ (x - %> + () (x - %>

[reom =1 (5;) +0+ [ x- %)2 dx

Integration:

1 |J) \AJ| = IVIQ IUI A T | VU,1]
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Midpoint rule error bound proof

Consider the first interval [O, ﬂ By Taylor’s theorem,

1 1 1 1\°
FGO) = f (%> +f (%> (x - —) + () (x - %>

jf(x)dx—%f( >+0+j f”(fﬂ(x—%) dx
1 2
1 1 1 1 1 M,
=Ef<2n)+sz0 <x_%> dx=£f<2n>i24" 3

Summing over n intervals together proves the theorem.

Integration:

if |f"(x)] <M, forx € [0,1]
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Integration y

Trapezoidal rule f(xi1)

[ros=Y3(r@e ()

=0

> X

- %(fm) + znif (5)+ f(1)>
=1

Error bound: O(M,n"%)
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Integration

Interpolatory quadrature / Gaussian quadrature

jolf (¥)dx ~ jo 1P(x>dx = fo 1iZnOf (x) i (x) dx = Zf (x) ]O 1€ifx)daf

Wi

Lagrange interpolation

For any f, there is a unique degree-n polynomial p such that f(x;) = p(x;) for any given n + 1 points
Xo, .-, Xn. More specifically,

plx) = Z fxp)ti(x), 2,(x) = n XY
=0

x. —x.
o<jsm,j=i ¢
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Integration

Interpolatory quadrature / Gaussian quadrature

jolf (¥)dx ~ jo 1P(x>dx = fo 1iZnOf (x)i(x) dx = Zf (x) jo 1€ifx)daf

If f is a polynomial of degree < n, then there is no error!

Suppose we have an interpolation scheme such that

fo FGodx — Z wif (x)

< CnMn+1;

Wi

where M, . = xren[g)i]|f(n+1) (x)|

Then, we can cut the integral into k pieces and get the following

January 20, 2026

k—1 n

[ 33w (%

j=0 i=

X+

18

)

<k-

C Mn+1 —C Mn+1
ngntz o T e+l (exp convergence!)

Apply chainrule n + 1 times



Integration

Interpolatory quadrature / Gaussian quadrature

< C,M,,q, where M, = rr%guf |f("+1)(x)|

jo Fdx — z wif (x)

Lemma. Given any n + 1 times differentiable function f. Let p,,(x) be an n degree polynomial
such that p,,(x;) = f(x;) fori = 0,1, ...,n. Then, for any x € [0,1], we have

FODEN T
(x —x;) forsomeé, €[0,1]
(n+ 1)! L_o[

fx) —pa(x) =
This lemma implies that

jolf(x)dx — Z wif (x| <

(n+ D) (g) T
D) 1_[( —x;) dx| <

H(x — X;)

~ (n +1)'.xreng)§
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Integration

Lemma. Given any n + 1 times differentiable function f. Let p,,(x) be an n degree polynomial

such that p,,(x;) = f(x;) fori = 0,1, ...,n. Then, for any x € [0,1], we have

fEI T
f(x) —p,(x) = CEE 6h(x —x;) forsomeé, €[0,1]
=
Proof.
Let w(t) == [[I=,(t — x;) and consider the function

F©) = 1) = put) - 2 22

F(x;) =0fori =0,1,...,nand F(x) = 0 (check by yourself)
F(t) hasn + 2 roots in [0,1], by applying Rolle’s Theorem repeatedly, we get that there exists & € [0,1]
such that F™*D (&) = 0

f) —pn(x)

(n+1) — f(n+1) —0—
FOD@) = fD () =0 = =8 = 0
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Integration

Interpolatory quadrature / Gaussian quadrature

jo Fdx — z wif (x)

How to choose x,, x4, ..., X,, € [0,1] such that m[%]ll_[’{‘zo(x — x;)| is small?
x€e|0,

< C,M,,q, where M, = xrer%guiﬂf(”“) (x)|

This quantity is minimized by Chebyshev nodes:

1.1 (2i+1
TN\ 2

n) vVi=01,..,n

> {x;} are the roots of the Chebyshev polynomial T,,,;(2x — 1)
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Integration

Interpolatory quadrature / Gaussian quadrature

jo Fdx — z wif (x)

How to choose x, x4, .. € [0,1] such that max IH " o(x — x;)| is small?

< C,M,,q, where M, = xrer%guiﬂf(”“) (x)|

This quantity is minimized by Chebyshev nodes:

_L L (EAL N
xl-.—2 2Cos 2n+2n i=01,..,n

We have that

n+1

- ( + 1)| 22n+1

(x)dx — Z wif (x)| <

January 20, 2026 23



Integration

Exponentially Convergent Trapezoidal Rule

If f is sufficiently smooth and periodic, then the trapezoidal rule / midpoint rule has an exponentially
convergent error bound.

- Exponential convergence also holds for some “peak-like” functions integrated over the real line, e.g.,

f e "dx — h z e"UM’| = o(e~™/1)

j=—o0

\ J
I

NG
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Exponentially Convergent Trapezoidal Rule

Let I, == h Y7L _o e~UM* and [ = ffooo e~ dx

Consider the Fourier transform of f(x) = e *%

. 1 1 . 2 1 2
—_ X=Xy = —— p—$°/4
f(&) o j_ooe et dx =o=e
Observe that I = 2nf(0) ==

Another tool we use is the Poisson Summation Formula, which connects discrete sum [, to the
continuous Fourier transform f:

Ih=2nz <2n]> \/_Z —m*Jt/h

]_ (00] ]——OO

=5l =2ym )y e ms/n
=1
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Exponentially Convergent Trapezoidal Rule

I =2nf(0)
I, =21 z <2n]) N z ~m?j%/h?
_]——OO ]——OO

Thus, we have

|I—Ih|—2n2f<2 ]>—2\/_z m?j2/h?

];tO

_ j _ 1 _
< 2\/%2(6 nZ/hZ) _ 2\/%6 2 /h? —— _ 0(6 7Tz/hz)
j=1

Januar y 20,2026 26
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Stirling Approximation

n n
n!' ~\V2mn (—)
e
In(n!) = X In(@) concave /
Trapezoidal rule: Increasing
> /

i > n—-1
jl In(x) dx =~ % (In(1) + In(n)) + ; In(i) = In(n!) — %ln(n)

Evaluate the integral and simplify the terms:
n n
j ln(x)dx=xln(x)—x‘ =nln(n) —n+1
1 1

In(n!) = <n + %) In(n) —n+1 = n! =~ e\/n (g)n

<
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Stirling Approximation

Trapezoidal rule:

Jnln(x) dx = In(n!) — %ln(n) + E,,, (E, > 0)
1

Evaluate the integral and simplify the terms:

In(n!) = (n + 1) In(n) —n+1-E, = nl=e "n/n (Z)n

2

For each segment [i,i + 1],

i+1 )
J, In(x) dx — %(ln(i) +In(i+1)) = — (nGe))"le=g; _

12 128

Summing together,
n-1

&, €(i,i+1)

n-—1 n-—1
1 1 1
Ezz <Z - 0(1), E>Z —0(1) = E,=C+o(1
" Lizg? T L2l (D) " L12(i+1)? (D) n o(1)
l= 1= 1=
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Stirling Approximation

nl = V2mn (Z)n (1 +0 <%>>

Asymptotic estimation of binormal coefficient

Basic version:

Entropy version:

onH(p) n 21H(p)
<(2)<
J8p(1—p)n  \Pn)  [2np(1 —p)n

where H(p) := —plog,(p) — (1 — p) log,(1 — p) forany p € (0,1)
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Binormal Coefficient Estimation

ZnH(p) n ZTlH(p)
< < ) <
J8p(1—p)n  \Pn) . [2np(1 —p)n

By Stirling approximation,
n
< n ) 21N (g)

T e (B yzr@ - ((1 _phn

~

)(1—p)n

— 1 . epn+(1—p)n—n . zn(log n—p log(pn)—(1-p) log((l—p)n))
J2rp(1 —p)n
1 7nH(p)

— . pn(=plogp—(1-p) log(1-p)) —
J2mp(1 — p)n J2mp(1 —p)n
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